Mẹo Tìm giá trị lớn nhất M và giá trị nhỏ nhất M của hàm số y cos2x 1

Kinh Nghiệm về Tìm giá trị lớn số 1 M và giá trị nhỏ nhất M của hàm số y cos2x 1 Chi Tiết

Bùi Xuân Trường đang tìm kiếm từ khóa Tìm giá trị lớn số 1 M và giá trị nhỏ nhất M của hàm số y cos2x 1 được Cập Nhật vào lúc : 2022-09-12 02:56:04 . Với phương châm chia sẻ Kinh Nghiệm Hướng dẫn trong nội dung bài viết một cách Chi Tiết Mới Nhất. Nếu sau khi Read nội dung bài viết vẫn ko hiểu thì hoàn toàn có thể lại Comment ở cuối bài để Tác giả lý giải và hướng dẫn lại nha.

AMBIENT-ADSENSE/

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, nhấn vào Bắt đầu thi để làm toàn bài

CÂU HỎI KHÁC

Phương pháp giải:

Đặt (cos ,x = t,,,,t in left[ - 1;1 right]). Tìm GTLN, GTNN của hàm số (y = fleft( t right) = 2t^2 + t - 1) trên đoạn  (left[ - 1;1 right]) bằng phương pháp lập BBT.

Lời giải rõ ràng:

Ta có: (y = cos 2x + cos x = 2cos ^2x + cos x - 1).

Đặt (cos mkern 1mu x = t,mkern 1mu mkern 1mu mkern 1mu t in left[ - 1;1 right]). Hàm số trở thành (y = 2t^2 + t - 1). Đây là một trong parabol có bề lõm hướng lên, có hoành độ đỉnh (x =  - dfracb2a =  - dfrac14).

BBT:

 

Tìm giá trị lớn nhất M và giá trị nhỏ nhất M của hàm số y cos2x 1

Dựa vào BBT ta có: (M = 2,,,m =  - dfrac98),

Vậy (M + m = 2 - dfrac98 = dfrac78).

Chọn D.

Hàm số (y = sin x) có tập xác định là:

Tập giá trị của hàm số (y = sin x) là:

Hàm số (y = cos x) nghịch biến trên mỗi khoảng chừng:

Đồ thị hàm số (y = tan x) luôn đi qua điểm nào dưới đây?

Hàm số nào sau đây không là hàm số lẻ?

Hàm số nào sau đây có đồ thị không là đường hình sin?

Đường cong trong hình hoàn toàn có thể là đồ thị của hàm số nào dưới đây?

Tìm giá trị lớn nhất M và giá trị nhỏ nhất M của hàm số y cos2x 1

Hàm số (y = dfrac1 - sin 2xcos 3x - 1) xác định trên:

Tìm chu kì của hàm số (y = fleft( x right) = tan 2x).

Tìm chu kì của những hàm số sau (fleft( x right) = sin 2x + sin x) 

Tìm chu kì của những hàm số sau (y = tan x.tan 3x).

Tìm chu kì của những hàm số sau (y = sin sqrt x ) 

Khẳng định nào sau đây là đúng?

Hàm số nào sau đây không chẵn, không lẻ?

Hàm số nào trong những hàm số sau có đồ thị nhận (Oy) làm trục đối xứng ?

Giá trị nhỏ nhất của hàm số (y = 2cos ^2x + sin 2x) là

Cho hàm số lượng giác (f(x) = tan x - dfrac1sin x).

    lý thuyết trắc nghiệm hỏi đáp bài tập sgk

Các thắc mắc tương tự


Gọi (M,,,m) lần lượt là giá trị lớn số 1 và giá trị nhỏ nhất của hàm số (y = cos 2x) trên đoạn (left[ - dfracpi 3;dfracpi 6 right]). Tính giá trị biểu thức (T = M - 2m).


A.

B.

C.

D.

    Tìm giá trị lớn nhất M và giá trị nhỏ nhất M của hàm số y cos2x 1 Tải app VietJack. Xem lời giải nhanh hơn!

Quảng cáo

Để tìm được giá trị lớn số 1;giá trị nhỏ nhất của hàm số ta cần để ý quan tâm:

+ Với mọi x ta luôn có: - 1 ≤ cosx ≤ 1; -1 ≤ sinx ≤ 1

+Với mọi x ta có: 0 ≤ |cosx| ≤ 1 ;0 ≤ |sinx| ≤ 1

+ Bất đẳng thức bunhia –copski: Cho hai bộ số (a1; a2) và (b1;b2) khi đó ta có:

(a1.b1+ a2.b2 )2 ≤ ( a12+ a22 ).( b12+ b22 )

Dấu “=” xảy ra khi: a1/a2 = b1/b2

+ Giả sử hàm số y= f(x) có mức giá trị lớn số 1 là M và giá trị nhỏ nhất là m. Khi đó; tập giá trị của hàm số là [m; M].

+ Phương trình : a. sinx+ b. cosx= c có nghiệm khi và chỉ khi a2 + b2 ≥ c2

Ví dụ 1. Tìm giá trị lớn số 1 M và giá trị nhỏ nhất m của hàm số y= 1- 2|cos3x|.

A. M=3 ; m= - 1.

B. M= 1 ; m= -1.

C. M=2 ;m= -2.

D. M=0 ; m= -2.

Lời giải:.

Chọn B.

Với mọi x ta có : - 1 ≤ cos3x ≤ 1 nên 0 ≤ |cos3x| ≤ 1

⇒ 0 ≥ -2|cos3x| ≥ -2

Tìm giá trị lớn nhất M và giá trị nhỏ nhất M của hàm số y cos2x 1

Ví dụ 2: Hàm số y= 1+ 2cos2x đạt giá trị nhỏ nhất tại x= x0. Mệnh đề nào sau đây là đúng?

A.x0=π+k2π, kϵZ .

B.x0=π/2+kπ, kϵZ .

C.x0=k2π, kϵZ .

D.x0=kπ ,kϵZ .

Lời giải:.

Chọn B.

Ta có - 1 ≤ cosx ≤ 1 ⇒ - 0 ≤ cos2x ≤ 1 ⇒ 1 ≤ 1+2cos2x ≤ 3

Do đó giá trị nhỏ nhất của hàm số bằng 1 .

Dấu ‘=’ xảy ra khi cosx=0 ⇒ x=π/2+kπ, kϵZ .

Quảng cáo

Ví dụ 3: Tìm giá trị lớn số 1 M và giá trị nhỏ nhất m của hàm số y= sin2x+ 2cos2x.

A.M= 3 ;m= 0

B. M=2 ; m=0.

C. M=2 ; m= 1.

D.M= 3 ; m= 1.

Lời giải:.

Chọn C.

Ta có: y = sin2 x+ 2cos2x = (sin2x+ cos2x) + cos2x = 1+ cos2 x.

Do: -1 ≤ cosx ≤ 1 nên 0 ≤ cos2 x ≤ 1 ⇒ 1 ≤ cos2 x+1 ≤ 2

Suy ra giá trị lớn số 1 của hàm số là M= 2 và giá trị nhỏ nhất của hàm số là m= 1

Ví dụ 4: Tìm giá trị lớn số 1 M và giá trị nhỏ nhất m của hàm số y= 4sinx - 3

A.M= 1; m= - 7

B. M= 7; m= - 1

C. M= 3; m= - 4

D. M=4; m= -3

Lời giải

Chọn A

Ta có : - 1 ≤ sinx ≤ 1 nên - 4 ≤ 4sinx ≤ 4

Suy ra : - 7 ≤ 4sinx-3 ≤ 1

Do đó : M= 1 và m= - 7

Ví dụ 5: Tìm tập giá trị T của hàm số y= -2cos2x + 10 .

A. [5; 9]

B.[6;10]

C. [ 8;12]

D. [10; 14]

Lời giải:

Chọn C

Với mọi x ta có : - 1 ≤ cos⁡2x ≤ 1 nên-2 ≤ -2cos2x ≤ 2

⇒ 8 ≤ -2cos2x+10 ≤ 12

Do đó tập giá trị của hàm số đã cho là : T= [ 8 ;12]

Quảng cáo

Ví dụ 6: Tính độ dài giá trị của hàm số y= 10- 2cos2x

A. 10

B. 8

C.6

D. 4

Lời giai

Với mọi x ta có: - 1 ≤ cos2x ≤ 1 nên-2 ≤ -2cos2x ≤ 2

Suy ra: 8 ≤ 10-2cos2x ≤ 12

Do đó; tập giá trị của hàm số đã cho là: [8; 12] và độ dài đoạn giá trị của hàm số là : 12 – 8= 4

Chọn D.

Ví dụ 7: Tính tổng giá trị nhỏ nhất m và giá trị lớn số 1 M của hàm số sau: y= √3 sin⁡( 2016x+2022)

A. - 4032

B. √3

C. -√3

D. 0

Lời giải:

Chọn D

Với mọi x ta có :- 1 ≤ sin⁡(2016x+2022) ≤ 1

⇒ -√3 ≤ √3sin⁡(2016x+2022) ≤ √3

Do đó giá trị nhỏ nhất của hàm số là -√3 và giá trị lớn số 1 của hàm số là √3

⇒ Tổng giá trị lớn số 1 và nhỏ nhất của hàm số là - √3+ √3=0

Ví dụ 8: Tìm giá trị nhỏ nhất m của hàm số y= 1/(1+sinx)

A. m= 1/2

B. m= 1/√2

C. m= 1

D. m= √2

Lời giải:

Chọn A

Điều kiện xác định : sinx ≠ -1 hay x ≠ (- π)/2+k2π

+ Với mọi x thỏa mãn điều kiện ta có : - 1 0

+ Nếu mẫu 1+ sinx > 0 thì hàm số đạt giá trị nhỏ nhất lúc và chỉ khi một+ sinx đạt giá trị lớn số 1

Hay 1+ sinx=2 < ⇒ sinx= 1( thỏa mãn điều kiện) .

Khi đó ymin = 1/2

Vậy hàm số đạt giá trị nhỏ nhất là một trong/2 khi sinx= 1

Ví dụ 9: Tìm giá trị lớn số 1 M, giá trị nhỏ nhất m của hàm số: y= 2018sin( 9x+π/100)+2000

A. m=18 ; M=4018

B. m = -18; M= 18

C. m=-18; M= 4018

D. Đáp án khác

Lời giải:

Chọn C

Hàm số xác định trên R.

Với mọi x ta có: - 1 ≤ sin( 9x+π/100) ≤ 1 nên - 2022 ≤ 2018sin( 9x+π/100) ≤ 2022

⇒ -18 ≤ 2018sin( 9x+π/100)+2000 ≤ 4018

⇒ giá trị nhỏ nhất của hàm số là -18 khi sin( 9x+π/100)=-1

Giá trị lớn số 1 của hàm số là 4018 khi sin( 9x+π/100)=1

Ví dụ 10: Tìm giá trị lớn số 1 M và giá trị nhỏ nhất m của hàm số y= ∜sinx- √cosx.

A. m= -1; M=1.

B. m = 0; M=1

C. m= -1;M=0

D. m= -1 và M không tồn tại.

Lời giải:

Chọn A

Với mọi x thỏa mãn điều kiện : sinx > 0 và cosx > 0 .Ta có:

Tìm giá trị lớn nhất M và giá trị nhỏ nhất M của hàm số y cos2x 1

Vậy hàm số đạt giá trị nhỏ nhất là m= – 1 khi: (sinx=0 và cosx=1 ⇒ x= k2π.

Hàm số đạt giá trị lớn số 1 là M=1 khi (sinx=1 và cosx=0 ⇒ x= π/2+k2π.

Ví dụ 11. Gọi M và m lần lượt là giá trị lớn số 1 và giá trị nhỏ nhất của hàm số : y= cos2 x – 6cosx + 11. Tính M.m

A.30

B.36

C.27

D.24

Lời giải:

Ta có: cos2 x – 6cosx +11 = ( cos2x – 6cosx + 9) +2 = (cosx -3)2 + 2

Do - 1 ≤ cosx ≤ 1 ⇒ - 4 ≤ cosx-3 ≤ -2

⇒ 0 ≤ (cosx-3)^2 ≤ 16

⇒ 2 ≤ (cosx-3)^2+2 ≤ 18

Suy ra:M= 18 và m= 2 nên M. m= 36.

Chọn B.

Ví dụ 12. Gọi M và lần lượt là giá trị lớn số 1; giá trị nhỏ nhất của hàm số

y=(cosx+2sinx+3)/(2cosx-sinx+4). Tính S= M+11m

A.4

B.5

C. 6

D. 8

Lời giải:.

Gọi y0 là một giá trị của hàm số.

Khi đó phương trình y0=(cosx+2sinx+3)/(2cosx-sinx+4) có nghiệm.

⇒ y0.( 2cosx- sinx + 4) = cosx +2sinx + 3 có nghiệm

⇒ 2y0.cosx – sinx.y0 + 4y0- cosx – 2sinx – 3=0 có nghiệm

⇒ ( 2y0 -1)cosx – ( y0+2).sinx =3- 4y0 (*)

Phương trình (*) có nghiệm khi và chỉ khi :

(2y0-1)2 + ( y0 + 2)2 ≥ (3-4y0)2

⇒ 4y02 – 4y0 +1 +y02 +4y0 + 4 ≥ 9-24y0+16y02

⇒ 11y02 – 24y0 + 4 ≤ 0  2/11 ≤ y0 ≤ 2

Suy ra: M=2 và m=2/11 nên S= M+ 11m= 4

Chọn A.

Ví dụ 13. Cho hàm số y= √(1+2sin2 x)+ √(1+2〖cos2 x)-1. Gọi m và M lần lượt là giá trị nhỏ nhất và giá trị lớn số 1 của hàm số. Khi đó; giá trị M+ m gần với giá trị nào nhất?

A. 3,23

B. 3,56

C. 2,78

D.2,13

Lời giải:

+ Xét t= √(1+2sin2 x)+ √(1+2cos2 x)

⇒ t2 = 1+ 2sin2 x+ 1+ 2cos2 x+ 2. √((1+2sin2 x).( 1+2cos2 x) )

=4+2√(3+ sin2 2x)

Mà sin22x ≥ 0 nên t2 ≥ 4+ 2√3

Mà t > 0 nên t ≥ √(4+2√3) =1+ √3

Suy ra: y= t-1 ≥ √3

Dấu “=” xảy ra khi sin2x=0 .

+ Lại có:

√(1+2sin2 x)+ √(1+2cos2 x) ≤ √((1^2+ 1^2 ).( 1+2sin2x+ 1+2cos2 x) )= 2√2

⇒ y= √(1+2sin2 x)+ √(1+2cos2 x)-1 ≤ 2√2-1

Dấu “=” xảy ra khi sin2 x= cos2x

Vậy {(m= √3 và M=2√2-1) ⇒ M+ m≈3,56

Chọn B.

Câu 1:Gọi M; m lần lượt là giá trị lớn số 1 và giá trị nhỏ nhất của hàm số y=8sin2x+3cos2x . Tính P= M- 2m.

A. P= - 1

B. P= 1

C. P= 2

D. P=0

Hiển thị lời giải

Chọn A.

Ta có: y = 8sin2 x + 3cos2x = 8sin2x + 3( 1 – 2sin2x ) = 2sin2x+ 3.

Mà -1 ≤ sinx ≤ 1 ⇒ 0 ≤ sinx ≤ 1 ⇒ 3 ≤ 2sinx+3 ≤ 5 ⇒ 3 ≤ y ≤ 5.

Suy ra: M= 5 và m= 3

Do đó: P = 5- 2.3= - 1

Câu 2:Tìm giá trị lớn số 1 M của hàm số y= 4sin2x + 3.cos2x .

A. M= 3

B. M= 1

C. M= 5

D. M= 4

Hiển thị lời giải

Chọn C.

Ta có: y = 4sin2x+ 3cos2x = 5.( 4/5.sin2x+ 3/5 cos2x).

Đặt cosα= 4/5 và sinα= 3/5

Khi đó: y= 5( cosα.sin2x+sinα.cos2x)=5.sin⁡( α+2x)

⇒ - 5 ≤ y ≤ 5

Suy ra M= 5.

Câu 3:Gọi M ; m lần lượt là giá trị lớn số 1 và giá trị nhỏ nhất của hàm số y= sin2x – 4sinx+ 5. Tính M+ m.

A.3

B.8

C.10

D.12

Hiển thị lời giải

Chọn D.

Ta có: y= sin2x – 4sinx+ 5= ( sinx- 2)2 + 1.

Do: -1 ≤ sinx ≤ 1 nên-3 ≤ sinx-2 ≤ -1

⇒ 1 ≤ ( sinx-2)2 ≤ 9 ⇒ 2 ≤ ( sinx-2)2+1 ≤ 10 .

Suy ra: M=10 và m = 2

Do đó; M+ m = 12

Câu 4:Cho hàm số y= cos2x- cosx có tập giá trị là T. Hỏi có tất cả bao nhiêu giá trị nguyên thuộc T.

A. 1

B. 2

C. 3

D. 4

Hiển thị lời giải

Chọn C.

Ta có: cos2x- cosx = (cosx- 1/2)2- 1/4 .

Do - 1 ≤ cosx ≤ 1 nên (- 3)/2 ≤ cosx- 1/2 ≤ 1/2

⇒ 0 ≤ ( cosx- 1/2)2 ≤ 9/4 ⇒ (- 1)/4 ≤ ( cosx- 1/2)2- 1/4 ≤ 2.

Do đó (- 1)/4 ≤ y ≤ 2. Vậy tập giá trị của hàm số là [(- 1)/4;2]

⇒ Trong đoạn [ -1/4;2] có ba giá trị nguyên thỏa mãn là 0; 1 và 2.

Do đó có 3 giá trị thỏa mãn.

Câu 5:Hàm số y= cos2x+ 2sinx+ 2 đạt giá trị nhỏ nhất tại x0. Mệnh đề nào sau đây là đúng.

A. x= (-π)/2+k2π.

B. x= π/2+k2π.

C. x= k π

D. x= k2π

Hiển thị lời giải

Chọn B.

Ta có: cos2x+ 2sinx+ 2 = 1- sin2x+ 2sinx + 2= - sin2x + 2sinx+ 3 = - (sinx-1)2 + 4

Mà - 1 ≤ sinx ≤ 1 nên-2 ≤ sinx-1 ≤ 0

Suy ra: 0 ≤ ( sinx-1)2 ≤ 4 ⇒ -4 ≤ - (sinx-1)2 ≤ 0

⇒ 0 ≤ 4 - (sinx-1)2 ≤ 4

Suy ra giá trị nhỏ nhất của hàm số bằng 0.

Dấu “=” xảy ra khi và chỉ khi sinx= 1 ⇒ x= π/2+k2π.

Câu 6:Tìm giá trị lớn số 1 M và nhỏ nhất m của hàm số y= sin4x -2 cos2x+ 1.

A.M= 2; m= - 2

B.M=1; m=0

C.M=4;m= - 1

D M=2;m= - 1

Hiển thị lời giải

Chọn D.

Ta có: sin4x- 2cos2x + 1= sin4x – 2( 1- sin2x) + 1

= sin4x + 2sin2x - 1 = ( sin2 x +1)22 - 2

Mà: 0 ≤ sin2 x ≤ 1 nên 1 ≤ sin2 x+1 ≤ 2

Suy ra: 1 ≤ ( sin2 x+1)2 ≤ 4 ⇒ -1 ≤ ( sin2 x+1)2-2 ≤ 2 .

Nên M= 2; m= - 1

Câu 7:Tìm giá trị nhỏ nhất của hàm số y= 4sin4x – cos4x.

A. - 3

B. - 1

C. 3

D. 5

Hiển thị lời giải

Chọn B.

Ta có: y= 4sin4x – cos4x= 4.((1-cos2x)/2)2-(2cos2 2x-1)

= 1- 2cos2x+ cos22x – 2cos2x + 1

= - cos42x - 2cos2x + 2 = - (cos2x+ 1)2 + 3

Mà -1 ≤ cos2x ≤ 1 ⇒ 0 ≤ cos2x+1 ≤ 2 ⇒ 0 ≤ (cos2x+1)2 ≤ 4 ⇒ -1 ≤ -(cos2x+1)2+3 ≤ 3

Suy ra m= - 1.

Câu 8:Gọi M và m lần lượt là giá trị lớn số 1 và giá trị nhỏ nhất của hàm số y= 2( sinx - cosx). Tính P= M+ 2m.

A. 2

B. - 2√2

C. - √2

D. 4√2

Hiển thị lời giải

Chọn B

Ta có : 2( sinx- cosx)=2√2 sin⁡( x- π/4)

Với mọi x thì : - 1 ≤ sin⁡( x- π/4) ≤ 1

⇒ - 2√2 ≤ 2√2.sin⁡( x- π/4) ≤ 2√2

Vậy giá trị lớn số 1 và giá trị nhỏ nhất của hàm số đã cho là M= 2√2 và m= -2√2

⇒ P= M+ 2m= - 2√2

Câu 9:Giá trị lớn số 1 và giá trị nhỏ nhất của hàm số y= √(1- cos2 x)+1là:

A. 2 và 1

B. 0 và 3

C. 1 và 3

D.1 và 1+ √2

Hiển thị lời giải

Ta có : √(1- cos2 x)= √(sin2 x)= |sinx|

Do đó; hàm số y= √(1- cos2 x)+1=|sinx|+1

Với mọi x ta có: - 1 ≤ sinx ≤ 1 nên 0 ≤ |sinx| ≤ 1

⇒ 1 ≤ |sinx|+1 ≤ 2

⇒ giá trị lớn số 1 và giá trị nhỏ nhất của hàm số đã cho là 2 và 1.

Chọn A

Câu 10:Giá trị nhỏ nhất của hàm số y= 4sin2 x+ 6cos2x+ 2 là

A. 4

B. 6

C. 8

D. 10

Hiển thị lời giải

Ta có: 4sin2x + 6cos2 x+ 1= 2( 1- cos2x) + 3( 1+cos2x) + 2 = cos2x+ 7

Với mọi x ta luôn có: - 1 ≤ cos2x ≤ 1 nên 6 ≤ cos2x+7 ≤ 8

Suy ra: giá trị nhỏ nhất của hàm số là 6

Chọn B.

Câu 11:Tìm tập giá trị lớn số 1, giá trị nhỏ nhất của hàm số sau

A.max y=4,min y=3/4

B.max y=3,min y=2

C.max y=4,min y=2

D.max y=3,min y=3/4

Hiển thị lời giải

Đặt t=sin2x, 0 ≤ t ≤ 1 ⇒ cos2x=1-2t

⇒ y= 2t+(1-2t)2=42-2t+1=(2t-1/2)2+3/4

Do 0 ≤ t ≤ 1 ⇒ -1/2 ≤ 2t-1/2 ≤ 3/2 ⇒ 0 ≤ (2t-1/2)2 ≤ 9/4 ⇒ 3/4 ≤ y ≤ 3 .

Vậy max y=3 đạt được khi x=π/2+kπ .

min y=3/4 đạt được khi sin2x=1/4 .

Chọn D.

Câu 12:Tìm tập giá trị lớn số 1, giá trị nhỏ nhất của hàm số sau y = 3sinx + 4cosx + 1

A. max y=6,min y=-2

B. max y=4,min y=-44

C. max y=6,min y=-4

D.max y=6,min y=-1

Hiển thị lời giải

Áp dụng bất đẳng thức bunhia- xcopski: (ac+bd)2 ≤ (c2+d2)(a2+b2) .

Đẳng thức xảy ra khi a/c=b/d .

Ta có: (3sinx+4cosx)2 ≤ (32+42)(sin2+cos2)=25

⇒ 5 ≤ 3sinx+4cosx ≤ 5 ⇒ -4 ≤ y ≤ 6

Vậy max y=6 , đạt được khi tanx=3/4 .

min y=-4 , đạt được khi tanx=-3/4.

Chọn C.

Câu 13:Tìm tập giá trị lớn số 1, giá trị nhỏ nhất của hàm số sau y=2sin2x+3sin2x-4cos2x

A. min y= -3√2 -1, max y=3√2 +1

B. min y= -3√2 -1, max y=3√2 -1

C. min y= -3√2 , max y=3√2 -1

D. min y= -3√2 -2, max y=3√2 -1

Hiển thị lời giải

Ta có: y= 2sin2 x + 3sin2x - 4cos2x

= 1 – cos2x + 3sin2x - 2( 1+ cos2x)

=3sin2x-3cos2x-1=3√2sin(2x-π/4)-1

Mà -1 ≤ sin(2x- π/4) ≤ 1 ⇒ - 3√2 ≤ 3√2sin⁡(2x- π/4) ≤ 3√2

⇒ - 3√2-1 ≤ 3√2sin⁡( 2x- π/4)-1 ≤ 3√2-1

Suy ra min y= -3√2 -1, max y=3√2 -1 .

Chọn B.

Câu 14:Tìm tập giá trị lớn số 1, giá trị nhỏ nhất của hàm số y=sin2x+3sin2x+3cos2x

A. min y= 2+√10 , max y=2-√10

B. min y= 2+√5, max y=2+√5

C. min y= 2+√2, max y=2-√2

D. min y= 2+√7, max y=2-√7

Hiển thị lời giải

Ta có:

Tìm giá trị lớn nhất M và giá trị nhỏ nhất M của hàm số y cos2x 1

Áp dụng bất đẳng thức bunhia- xcopki ta có :

- √(32+ 12 ) ≤ 3sin2x+cos2x ≤ √(32+ 12 )

Suy ra : -√10 ≤ 3sin2x+cos2x ≤ √10

⇒ 2-√10 ≤ y ≤ 2+√10

Từ đó ta đã có được: maxy=2+√10;miny=2-√10.

Chọn A.

Câu 15:Tìm tập giá trị lớn số 1, giá trị nhỏ nhất của hàm số sau y=sinx+ √(2-sin2)

A.min y= 0, max y=3

B.min y= 0, max y=4

C.min y= 0, max y=6

D.min y= 0, max y=2

Hiển thị lời giải

Ta có 0 ≤ y ∀x và y2=2+2sin√(2-sin2)

Mà 2|sin√(2-sin2)| ≤ sin2+2-sin2=2

Suy ra 0 ≤ y2 ≤ 4 ⇒ 0 ≤ y ≤ 4

min y=0 đạt được khi x=-π/2+k2π

max y=2 đạt được khi x=π/2+k2π

Chọn D.

Câu 16:Tìm tập giá trị lớn số 1, giá trị nhỏ nhất của hàm số sau y=(sin2x+2cos2x+3)/(2sin2x-cos2x+4)

A. min y= -2/11, max y=2

B. min y= 2/11, max y=3

C. min y= 2/11, max y=4

D. min y= 2/11, max y=2

Hiển thị lời giải

+ Áp dụng bất đẳng thức bunhia-xcopski ta có:

(2sin2x – cos2x)2 ≤ (22+(-1)2). ( sin22x + cos22x) = 5

⇒ -√5 ≤ 2sin2x-cos2x ≤ √5

⇒ 4-√5 ≤ 4+ 2sin2x-cos2x ≤ 4+√5

⇒ 4+ 2sin2x- cos2x > 0 với mọi x.

+ Ta có:

y=(sin2x+2cos2x+3)/(2sin2x-cos2x+4)

⇒ y. 2sin2x – y.cos2x + 4y = sin2x +2cos2x + 3

⇔ (2y-1)sin2x-(y+2)cos2x=3-4y (*)

Phương trình (*) có nghiệm khi và chỉ khi:

⇒ (2y-1)2+(y+2)2 ≥ (3-4y)2

⇔ 11y2-24y+4 ≤ 0 ⇔ 2/11 ≤ y ≤ 2

Suy ra: min y= 2/11, max y=2 .

Chọn D.

Câu 17:Tìm tập giá trị lớn số 1, giá trị nhỏ nhất của hàm số y=(2sin23x+4sin3xcos3x+1)/(sin6x+4cos6x+10)

A. min y= (11-9√7)/83, max y=(11+9√7)/83

B. min y= (22-9√7)/11, max y=(22+9√7)/11

C. min y= (33-9√7)/83, max y=(33+9√7)/83

D. min y= (22-9√7)/83, max y=(22+9√7)/83

Hiển thị lời giải

+Áp dụng bất đẳng thức bunhia- xcopski ta có:

( sin6x+4cos6x)2 ≤ (12+42). ( sin26x+ cos26x)= 17

⇒ -√17 ≤ sin6x+4cos6x ≤ √17

⇒ sin6x+4cos6x+10 ≥ 10-√17 > 0 ∀x thuộc R

Do đó; hàm số xác định với mọi x.

+ ta có: y=(2sin6x-cos6x+2)/(sin6x+4cos6x+10)

⇒ (y-2)sin6x+(4y+1)cos6x=2-10y

Phương trình trên có nghiệm khi và chỉ khi:

⇒ (y-2)2+(4y+1)2 ≥ (2-10y)2 ⇔ 83y2-44y-1 ≤ 0

⇒ (22-9√7)/83 ≤ y ≤ (22+9√7)/83.

Suy ra: min y= (22-9√7)/83, max y=(22+9√7)/83

Chọn D.

[embed]https://www.youtube.com/watch?v=ieCkGJwl-s8[/embed]

Giới thiệu kênh Youtube VietJack

    Tìm giá trị lớn nhất M và giá trị nhỏ nhất M của hàm số y cos2x 1 Hỏi bài tập trên ứng dụng, thầy cô VietJack trả lời miễn phí!

Tìm giá trị lớn nhất M và giá trị nhỏ nhất M của hàm số y cos2x 1

Tìm giá trị lớn nhất M và giá trị nhỏ nhất M của hàm số y cos2x 1

Tìm giá trị lớn nhất M và giá trị nhỏ nhất M của hàm số y cos2x 1

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Tìm giá trị lớn nhất M và giá trị nhỏ nhất M của hàm số y cos2x 1

Tìm giá trị lớn nhất M và giá trị nhỏ nhất M của hàm số y cos2x 1

Nhóm học tập facebook miễn phí cho teen 2k5: fb.com/groups/hoctap2k5/

Theo dõi chúng tôi miễn phí trên social facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các phản hồi không phù phù phù hợp với nội quy phản hồi trang web sẽ bị cấm phản hồi vĩnh viễn.

Tải thêm tài liệu liên quan đến nội dung bài viết Tìm giá trị lớn số 1 M và giá trị nhỏ nhất M của hàm số y cos2x 1 Cryto Giá

Review Tìm giá trị lớn số 1 M và giá trị nhỏ nhất M của hàm số y cos2x 1 ?

Bạn vừa Read Post Với Một số hướng dẫn một cách rõ ràng hơn về Clip Tìm giá trị lớn số 1 M và giá trị nhỏ nhất M của hàm số y cos2x 1 tiên tiến nhất

Share Link Tải Tìm giá trị lớn số 1 M và giá trị nhỏ nhất M của hàm số y cos2x 1 miễn phí

Bạn đang tìm một số trong những ShareLink Download Tìm giá trị lớn số 1 M và giá trị nhỏ nhất M của hàm số y cos2x 1 miễn phí.

Hỏi đáp thắc mắc về Tìm giá trị lớn số 1 M và giá trị nhỏ nhất M của hàm số y cos2x 1

Nếu sau khi đọc nội dung bài viết Tìm giá trị lớn số 1 M và giá trị nhỏ nhất M của hàm số y cos2x 1 vẫn chưa hiểu thì hoàn toàn có thể lại Comment ở cuối bài để Admin lý giải và hướng dẫn lại nha #Tìm #giá #trị #lớn #nhất #và #giá #trị #nhỏ #nhất #của #hàm #số #cos2x