Mẹo Khoảng cách giữa 2 đường thẳng Toán 10
Mẹo Hướng dẫn Khoảng cách giữa 2 đường thẳng Toán 10 2022
Lê Thùy Chi đang tìm kiếm từ khóa Khoảng cách giữa 2 đường thẳng Toán 10 được Cập Nhật vào lúc : 2022-09-08 17:02:02 . Với phương châm chia sẻ Thủ Thuật Hướng dẫn trong nội dung bài viết một cách Chi Tiết Mới Nhất. Nếu sau khi tham khảo Post vẫn ko hiểu thì hoàn toàn có thể lại phản hồi ở cuối bài để Tác giả lý giải và hướng dẫn lại nha.
39
00:27:49 Bài 1: Tọa độ của vectơ trong không khí
40
00:40:44 Bài 2: Tọa độ của điểm trong không khí
45
00:18:23 Bài 7: Ứng dụng tích được bố trí theo hướng tính diện tích s quy hoạnh
46
00:22:03 Bài 8: Ứng dụng tích được bố trí theo hướng tính thể tích
48
00:32:07 Bài 9: Bài toán viết phương trình mặt phẳng
51
00:19:42 Bài 12: Bài toán góc Một trong những mặt phẳng
53
Kiểm tra: Đề thi online phần Mặt phẳng
57
00:14:57 Bài 17: Góc giữa hai tuyến đường thẳng
58
00:15:13 Bài 18: Góc giữa đường thẳng và mặt phẳng
60
Kiểm tra: Đề thi online phần Đường thẳng
61
00:19:21 Bài 20: Bài toán viết phương trình mặt cầu
65
Kiểm tra: Đề thi online phần Mặt cầu
66
00:37:14 Bài 24: Ôn tập, nâng cao
Tìm khoảng chừng cách giữa hai tuyến đường thẳng song song Toán học lớp 10 với đầy đủ lý thuyết, phương pháp giải và bài tập có lời giải cho tiết sẽ giúp học viên nắm được Tìm khoảng chừng cách giữa hai tuyến đường thẳng song song
A. Phương pháp giải
d( d; d’) = d( A; d’) trong đó A là một điểm thuộc đường thẳng d.
⇒ Để tính khoảng chừng cách hai tuyến đường thẳng song song ta cần:
+ Đưa phương trình hai tuyến đường thẳng về dạng tổng quát.
+ Lấy một điểm A bất kì thuộc đường thẳng d.
+ Tính khoảng chừng cách từ điểm A đến đường thẳng d’ .
+ Kết luận: d( d; d’) = d( A; d’) .

B. Ví dụ minh họa
Ví dụ 1: Cho tam giác ABC có B( 1; -2) và C( 0; 1). Điểm A thuộc đường thẳng
d: 3x+ y= 0 .Tính diện tích s quy hoạnh tam giác ABC.
A. 1 B. 3 C. 0,5 D. 2
Lời giải
+ Phương trình đường thẳng BC:
⇒ Phương trình BC: 3(x - 1) + 1(y + 2) = 0 hay 3x + y - 1 = 0 .
+ ta có; BC = = √10
+ Xét vị trí tương đối giữa đường thẳng d và BC:
Ta có: ⇒ d // BC.
Mà điểm A thuộc d nên d( A; BC) = d( d; BC) . (1)
+ Ta tính khoảng chừng cách hai tuyến đường thẳng d và BC.
Lấy điểm O(0; 0) thuộc d.
⇒ d(d; BC) = d(O;BC) = =
( 2)
Từ ( 1) và ( 2) suy ra d( A; BC) = .
+ Diện tích tam giác ABC là S = d( A,BC).BC = . .√10 = 0, 5
Chọn C.
Ví dụ 2. Tính khoảng chừng cách giữa hai tuyến đường thẳng d: 7x + y - 3 = 0 và ∆: .
A. B. 15 C. 9 D.
Lời giải
+ Ta đưa đường thẳng ∆ về dạng tổng quát:
∆:
⇒ Phương trình ∆: 7( x + 2) + 1( y - 2) = 0 hay 7x + y + 12 = 0
Ta có: nên d // ∆
⇒ d(d;Δ) = d(A;d) =
Chọn A.
Ví dụ 3. Tập hợp những điểm cách đường thẳng ∆: 3x - 4y + 2 = 0 một khoảng chừng bằng 2 là hai tuyến đường thẳng có phương trình nào sau đây?
A. 3x - 4y + 8 = 0 hoặc 3x - 4y + 12 = 0. B. 3x - 4y - 8 = 0 hoặc 3x - 4y + 12 = 0.
C. 3x - 4y - 8 = 0 hoặc 3x - 4y - 12 = 0. D. 3x - 4y + 8 = 0 hoặc 3x - 4y - 12 = 0.
Lời giải
Gọi điểm M (x ; y) là vấn đề cách đường thẳng ∆ một khoảng chừng bằng 2. Suy ra :
d(M(x; y); Δ) = 2 ⇔ = 2
|3x - 4y + 2| = 10 ⇒
Vậy tập hợp những điểm cách ∆ một khoảng chừng bằng 2 là hai tuyến đường thẳng :
3x - 4y + 12 = 0 và 3x - 4y - 8 = 0
Chọn B.
Ví dụ 4. Trong mặt phẳng với hệ tọa độ Oxy, cho hai tuyến đường thẳng d1: 5x + 3y - 3 = 0 và d2: 5x + 3y + 7 = 0 song song nhau. Đường thẳng d vừa song song và cách đều với d1; d2 là:
A. 5x + 3y - 2 = 0 B. 5x + 3y + 4 = 0 C. 5x + 3y + 2 = 0 D. 5x + 3y - 4 = 0
Lời giải
Lấy điểm M ( x; y) thuộc đường thẳng d. Suy ra:
d(M(x; y); d1)=d(M(x; y); d2) ⇔
⇔
Đường thẳng d: 5x + 3y + 2 song song với hai tuyến đường thẳng d1 và d2.
Vậy đường thẳng d thỏa mãn là: 5x + 3y + 2 = 0
Chọn C.
Ví dụ 5: Cho đường thẳng d: và đường thẳng ∆:
. Tính khoảng chừng cách hai tuyến đường thẳng này.
A. 1 B. 0. C. 2 D. 3
Lời giải
+ Đường thẳng d:
⇒ Phương trình d: 3(x - 2) – 2(y + 1) = 0 hay 3x - 2y - 8 = 0
+ Đường thẳng ∆:
⇒ Phương trình ∆: 3(x - 0) – 2(y + 4) = 0 hay 3x - 2y - 8 = 0
⇒ hai tuyến đường thẳng này trùng nhau nên khoảng chừng cách hai tuyến đường thẳng này là 0.
Chọn B.
Ví dụ 6: Cho hai tuyến đường thẳng d: x + y - 2 = 0 và đường thẳng ∆: . Viết phương trình đường thẳng d’// d sao cho khoảng chừng cách hai tuyến đường thẳng d’ và ∆ là √2.
A. x + y - 1 = 0 B. x + y + 1= 0 C. x + y - 3 = 0 D. Cả B và C đúng.
Lời giải
+ Do đường thẳng d’// d nên đường thẳng d có dạng (d’) : x + y + c = 0( c ≠ -2)
+ Đường thẳng ∆:
⇒ Phương trình ∆: 1(x + 2) + 1(y - 3) = 0 hay x + y - 1 = 0.
+ Lấy điểm M ( 1; 0) thuộc ∆.
Để khoảng chừng cách hai tuyến đường thẳng d’ và ∆ bằng 2 khi và chỉ khi:
d( d’; ∆) = d( M; d’) = 2
⇔ = √2 ⇔ |1 + c| = 2
⇔
Vậy có hai tuyến đường thẳng thỏa mãn là : x + y + 1 = 0 và x + y - 3 = 0
Chọn D.
Ví dụ 7: Khoảng cách giữa hai tuyến đường thẳng ∆: 6x - 8y - 101 = 0 và d: 3x - 4y = 0 là:
A. 10, 1 B. 1,01 C. 12 D. √101 .
Hướng dẫn giải
+ Ta có:
⇒ Hai đường thẳng đã cho song song với nhau: d // ∆.
+ Lấy điểm O( 0;0) thuộc đường thẳng d.
+ Do hai tuyến đường thẳng d và ∆ song song với nhau nên
d(∆; d) = d ( O; ∆) = = 10,1
Chọn A.
C. Bài tập vận dụng
Câu 1: Cho đường thẳng d: 3x - 4y + 2 = 0. Có đường thẳng a và b cùng song song với d và cách d một khoảng chừng bằng 1. Hai đường thẳng đó có phương trình là:
A. 3x + 4y - 1 = 0 ; 3x + 4y + 5 = 0 B. 3x - 4y + 7 = 0 ; 3x - 4y - 3 = 0
C. 3x + 4y - 3 = 0 ; 3x + 4y + 7 = 0 D. 3x - 4y + 6 = 0; 3x - 4y - 4 = 0
Câu 2: Cho đường thẳng d: x - 2y + 2 = 0 . Phương trình những đường thẳng song song với d và cách d một đoạn bằng √5 là
A. x - 2y - 3 = 0; x - 2y + 7 = 0 B. x - 2y + 3 = 0 và x - 2y + 7 = 0
C. x - 2y - 3 = 0; x - 2y - 7 = 0 D. x - 2y + 3 = 0; x - 2y - 7 = 0 .
Câu 3: Cho đường thẳng d: 3x + 4y + 1 = 0. Có 2 đường thẳng d1 và d2 cùng song song với d và cách d một khoảng chừng bằng 1. Hai đường thẳng đó có phương trình là:
A. 3x + 4y - 7 = 0; 3x - 4y + 3 = 0. B. 3x - 4y + 7 = 0; 3x - 4y - 3 = 0
C. 3x + 4y + 4 = 0; 3x + 4y + 3 = 0. D. 3x + 4y - 4 = 0; 3x + 4y + 6 = 0 .
Câu 4: Khoảng cách giữa 2 đường thẳng (a): 7x + y - 3 = 0 và (b): 7x + y + 12 = 0 là
A. B. 9. C.
D. 15.
Câu 5: Cho hai tuyến đường thẳng d: x + y - 4 = 0 và đường thẳng ∆: . Tính khoảng chừng cách giữa hai tuyến đường thẳng này?
A. 1 B. 2 C. √2 D. Đáp án khác
Câu 6: Cho đường thẳng d: 2x - 3y + 6 = 0 và đường thẳng ∆: 4x - 6y + 20 = 0. Viết phương trình đường thẳng d’ // d sao cho khoảng chừng cách hai tuyến đường thẳng d’ và ∆ là √13
A. 2x - 3y + 23 = 0 B. 2x - 3y - 3 = 0.
C. 2x - 3y – 8 = 0 và 2x - 3y = 0 D. Cả A và B đúng
Câu 7: Cho tam giác ABC có B( - 2; 1) và C( 2; 0). Điểm A thuộc đường thẳng
d: x+ 4y- 10= 0 .Tính diện tích s quy hoạnh tam giác ABC.
A. 1 B. 3 C. 0,5 D.
Post a Comment